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Abstract

An algebraic technique is presented for balancing flux gradients and source terms when applying Roe�s approximate

Riemann solver in finite volume schemes. The numerical imbalance is eradicated by reformulating the governing matrix

hyperbolic system of conservation laws in terms of deviations away from an unforced but separately specified equi-

librium state. Thus, balancing is achieved by the incorporation of this extra physical information and bypasses con-

ventional numerical treatments of the imbalance. The technique is first applied to the shallow water equations.

Simulations of benchmark flows including wind-induced flow in a two-dimensional basin, transcritical flow in a one-

dimensional channel and wave propagation over a two-dimensional hump are in close agreement with analytical so-

lutions and predictions by alternative numerical schemes. The technique is then applied to a more complicated coupled

pair of equation sets, the hyperbolic period- and depth-averaged ray-type wave conservation and modified shallow

water equations that describe wave current interaction in the nearshore zone at the coast. Reasonable agreement is

obtained with laboratory measurements of wave diffraction behind a submerged elliptical shoal [Coastal Engrg. 6 (1982)

255] and of wave-induced nearshore currents at a half-sinusoidal beach [Wave-induced nearshore currents, Ph.D.

Thesis, Liverpool University, UK, 1981].

� 2003 Elsevier B.V. All rights reserved.

Keywords: Roe�s approximate Riemann solver; Flux gradients; Source terms; Shallow-water equations; Wave-conservation equations
1. Introduction

Prediction of flows with discontinuities, such as aerodynamic shock waves or hydraulic jumps, has been

a great challenge to numerical schemes for both gas dynamics and hydrodynamics. In a landmark paper,

Godunov [17] presented a treatment of discontinuities in hyperbolic systems by assuming piecewise con-

stant distributions of data within computational grid cells and solving the resultant discontinuities or

Riemann problems that exist at each cell interface. By upwinding the flux within an integral conservation
form of the governing equations, Godunov-type methods account for the physically correct propagation of
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information throughout the flow field by solving sets of Riemann problems over the entire computational

domain. Many approximate Riemann solvers now exist to evaluate numerically convective fluxes. One of

the most popular is the method due to Roe [30,31] which has been widely researched, particularly for steady
aerodynamic flows.

The advantages of using Riemann solvers to describe rapidly varying shallow water flows became

apparent in the early 1990s. The shallow-water equations (SWEs) describe the conservation of mass and

momentum in shallow water bodies, and are particularly amenable to solution by finite volume Godu-

nov-type approaches where Roe�s approximate Riemann solver can be used to evaluate inviscid fluxes

[1,3,14].

Although Roe�s approximate method is robust, difficulties arise in solving the Riemann problem when

source terms are included in the analysis (for details see [16]). Essentially, a numerical imbalance is created
by the artificial splitting of physically meaningful terms in the governing equations between flux gradients

and source terms in order to generate a mathematically hyperbolic formulation. These terms are then

evaluated by different methods at different locations within the computational grid creating the numerical

imbalance.

The imbalance problem is particularly acute for the SWEs where the surface gradient term within the

momentum equations is conventionally split into an artificial flux gradient and a source term that includes

the effect of the bed slope. Thus, many numerical solvers of the SWEs based on the conventional formu-

lation give unphysical results for flows over physically realistic variable bathymetries, solely because of this
mathematically convenient splitting. Nugic [28] observed that very poor results were obtained for cases of

shallow water flow with variable depth, referring to the problem as numerical incompatibility. Nugic

proposed a revised mathematical formulation of the SWEs, by reallocating all bed-slope related flux gra-

dients to the source terms. Ambrosi [2] noted that the effectiveness of using Roe�s approximate Riemann

solver was lost when the bottom slope varied, giving a quantitative estimation of the error of the scheme as

first-order, but accepted that the quiescent still water solution was not computed, in favour of preserving

the formal accuracy of the scheme.

Recently, V�aazquez-Cend�oon [38] used numerical upwinding of the source terms to achieve equilibrium
between flux gradient and source terms in the shallow water equations. Hubbard and Garc�ııa-Navarro [22]

and Garc�ııa-Navarro and V�aazquez-Cend�oon [15] have since extended this numerical treatment to higher-

order total variation diminishing (TVD) schemes. Meanwhile, Zhou et al. [41] suggested an alternative

piecewise linear reconstruction of the surface gradient term in the SWEs, which was demonstrated using an

HLL Riemann solver. LeVeque [24] proposed a wave propagation algorithm by artificially introducing

another discontinuity within each computational cell to account for the propagation of source terms.

Although suitable for quasi-steady conditions, LeVeque�s method is reportedly less robust when predicting

steady transcritical flows that contain shocks. In an investigation of different explicit schemes, Burguete and
Garc�ııa-Navarro [9] presented conservative schemes in a non-conservative formulation of the equations with

flux-adjusted source terms discretised using either a semi-implicit or upwinding technique. Gasc�oon and

Cober�aan [16] present another approach to deal with the balancing difficulty by transforming non-homo-

geneous conservation laws into homogeneous ones by introducing a new flux generated by the addition to

the physical flux of the primitive of the source term.

Most of the foregoing approaches attempted to rectify the problematic conventional formulation of the

SWEs using a numerical treatment. However, by mathematically rearranging the SWEs to be balanced

prior to their numerical solution by including quiescent still-water (or equilibrium) conditions, Rogers et al.
[33] avoided the computational effort incurred by the numerical balancing approaches such as upwinding of

source terms. Importantly, however, many conservation equations are not as simple as the SWEs, making

most balancing methods difficult to apply to formulations that include complicated combinations of de-

rivatives. Hence, the algebraic approach of Rogers et al. [33] to the flux-gradient source-term problem

provides the motivation for the present work.
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Section 2 of the present paper describes the difficulty encountered when balancing the flux gradient and

source terms for an example case of the one-dimensional shallow water equations. Section 3 develops a

generalisation of the technique presented by Rogers et al. [33] for mathematically balancing the shallow
water equations. In Section 4, it is confirmed that the balanced SWEs solver derived by Rogers et al. is a

particular case of the generalised method and results are presented that demonstrate the validity of the

approach. In Section 5, the applicability of the new technique is further illustrated by mathematically

conditioning a more complex set of equations that describe period-averaged wave–current interaction in the

nearshore zone which cannot be straightforwardly rewritten in a convenient mathematical form.
2. The nature of the problem

The SWEs are derived by depth-averaging the Reynolds equations and express conservation of mass and

momentum. It is assumed that vertical motions are negligible and that pressure is hydrostatic. In conser-

vation form, the two-dimensional shallow water equations are:
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ox
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oy

¼ 0; ð2:1aÞ
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where f is the free surface elevation above the still water level hs, h (¼ fþ hs) is the total water depth, u and

v are the depth-averaged velocities in the x- and y-directions, respectively, t is the time, ux, uy and vx, vy are
spatial derivatives of the velocity components, g is the gravitational acceleration, q is the water density, swx
and swy are surface stresses, sbx and sby are bed friction stresses, � is the kinematic eddy viscosity coefficient
and f is the Coriolis parameter.

When formulating a Riemann solver for the SWEs it is necessary to rewrite Eqs. (2.1a)–(2.1c) as a system

of hyperbolic equations. To achieve this, it is conventional to split the ghof=ox term between flux gradients

and source terms (e.g., [40]) to give:

gh
of
ox

¼ o

ox
1

2
gh2

� �
þ ghSox ðsurface gradient term ! flux gradientþ source termÞ; ð2:2Þ

where Sox is the bed slope in the x-direction. A similar treatment is applied in the y-direction. Of the Roe-

type Riemann solvers for the SWEs that use this approach, many have been validated using test cases with

either a flat bottom or a uniform slope (e.g. [1,3,40], etc.). However, numerical difficulties arise with the

splitting (2.2) when considering non-uniform bathymetries. If we consider the inviscid one-dimensional

shallow water equations in the x-direction only, Eqs. (2.1a)–(2.1c) become
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where the surface gradient term splitting of Eq. (2.2) has been incorporated as an extra artificial flux term

and a source term containing the bed slope Sox.
Within a finite volume scheme, the one-dimensional SWEs can be written in integral form as

o

ot

Z
X
qdXþ

Z
X

of

ox
dX ¼

Z
X
hdX; ð2:4Þ

where X is the problem domain, t is the time, x is a continuous real variable, q is the vector of conserved

variables, f is a flux vector and h is the vector of source terms. The vectors q, f and h are given by

q ¼ h
uh

� �
; f ¼ uh

u2hþ 1
2
gh2

� �
and h ¼ 0

swx � sbxð Þ=q� ghSox

� �
: ð2:5Þ

By applying Gauss� theorem to the second term in Eq. (2.4),

o

ot

Z
X
qdXþ

I
S
f dS ¼

Z
X
hdX; ð2:6Þ

which for each cell can be more conveniently rewritten as

oV q
ot

����
i

¼ �
I
oCi

f i dS þ Vihi ¼ � fEð � fWÞDsþ Vihi; ð2:7Þ

where qi and hi are the cell centre values, Vi denotes the area of cell, oCi is the path of integration, which is

along all cell edges (the flux out of each face being assumed uniform), fE and fW are the vector fluxes

through the east and west faces of each cell respectively and Ds is the length of each cell.

By adopting Roe�s approximate Riemann solver at each cell edge, the inviscid fluxes can be evaluated as

follows:

f i;j ¼
1

2
f qþi;j

� �h
þ f q�i;j

� �
� jAj qþi;j

�
� q�i;j

�i
; ð2:8Þ

where jAj ¼ RjKjL, qþi;j and q�i;j are reconstructed right and left Riemann states, respectively, at the cell

interface located between adjacent cells i and j, A is the flux Jacobian evaluated using R and L, the right and

left eigenvector matrices of A, respectively, and jKj is a diagonal matrix of the absolute values of the

eigenvalues of A.

To demonstrate the root cause of the numerical incompatibility, consider the one-dimensional situation

in Fig. 1(a) that depicts water initially at rest in a discretised basin with a varying bed slope. The bottom is

assumed to be smooth so there is no bed friction. Importantly, there are also no wind or surface shear
stresses, so there is no input driving force into the system that could cause movement of water. Therefore,

the water should remain perfectly still.

Initially, when the water is at rest, the matrix jAj is given by

jAj ¼ jcj 0
0 jcj

� �
: ð2:9Þ

However, across the interface between cell i and cell j, one can see that hþ 6¼ h�, so that in Eq. (2.8), an

unphysical non-zero flux is generated in the initially still water:

f i;j ¼
� 1

2
jcj hþ � h�ð Þ

1
2

1
2
g hþð Þ2 � 1

2
g h�ð Þ2

n o" #
; ð2:10Þ



Fig. 1. (a) Initial still water state creating unphysical fluxes. (b) Indistinguishable initial water state creating the same physical fluxes.
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which along with another flux at the wall on the other side of the cell i is clearly not balanced by an un-

physical driving input into the system generated in the source term by

h ¼ 0

�ghiSox

� �
: ð2:11Þ

Once this numerical imbalance is integrated in time, the next time step of the simulation creates other

unphysical fluxes based on this one and so on. The end result is that the model cannot even simulate still

water. Essentially, on the very first time step, the model cannot tell the difference between the fluxes induced

by the two different cases depicted in Fig. 1. The crucial difference between the situations depicted in Fig. 1
is that in 1(b), the bed slope is flat so the problem of source-term flux-gradient balancing is eradicated. The

problem still exists even if higher-order variable reconstruction schemes are used.

Consider the case of a circular lake of non-uniform bathymetry given by h ¼ ð0:5 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� 0:5r=Ro

p
ÞÞ=

1:3, where r is the radial distance from the centre of the basin and Ro ¼ 192 m is its boundary radius (see

Fig. 2(a)). In this case, the full two-dimensional shallow water equations are applicable. Initial conditions

are water at rest with a horizontal free surface. The plan domain is discretised spatially onto a quadtree grid

of interior level 6 and perimeter level 8 (see [33] for an explanation of the quadtree grid system). The

shallow water solver is integrated forward in time using time steps of Dt ¼ 0:05 s, in the absence of bed
friction, turbulent eddy viscosity and Coriolis force. Fig. 2(b) shows the depth-averaged velocity vectors at

t ¼ 1 s, where it is evident that the water is in motion even though there is no input driving force. The

situation is worst at the basin perimeter where the bed slope undergoes the greatest change and numerical

incompatibility is worst.

Rogers et al. [33] proposed balancing the flux gradients and source terms by a mathematical manipu-

lation of the troublesome bed-slope term, namely

gh
of
ox

¼ o

ox
1

2
gðf2

�
þ 2fhsÞ

�
þ gfSox: ð2:12Þ

Within the finite volume Godunov-type scheme, this approach has the advantage that the flow is driven

only by deviations of the free surface elevation from the still water level. Application of this mathematical

conditioning of the shallow water equations entirely eradicates the numerical imbalance in Roe�s ap-

proximate solver, and so the water remains quiescent throughout the domain at all times during the



Fig. 2. (a) Circular basin bathymetry – cross-section. (b) Velocity vectors for unbalanced still water case.
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simulation. The balanced simulation of wind-induced circulation in the circular basin will be examined later

in Section 4.2.
3. Derivation of a new flux gradient and source term balancing technique

Source and flux gradient terms in the discretised governing equations are split but rarely balanced when
using Roe�s approximate Riemann solver. This splitting has traditionally been done to ensure hyperbolicity

but without regard to a proper numerical balance, leading to spurious numerical errors and unphysical

solutions. Rogers et al. [33] split the troublesome terms in an algebraic manner that ensures mass and

momentum conservation. A generalisation of the technique presented by Rogers et al. now follows.

3.1. Reformulation

Consider a system of one-dimensional hyperbolic conservation laws integrated over a finite volume, X,

o

ot

Z
X
qdXþ

Z
X

ofðqÞ
ox

dX ¼
Z
X
hdX: ð3:1Þ

Applying Gauss�s theorem to the second term allows Eq. (3.1) to be solved conventionally using any of the

standard finite volume methods. However, in order to balance flux gradient and source terms, we now add

and subtract equilibrium (or quiescent) values of the integrated flux gradients to Eq. (3.1) to give

o

ot
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ofðqÞ
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�
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Z
X
hdX�

Z
X

ofðqeqÞ
ox

dX; ð3:2Þ

where the superscript eq denotes equilibrium values. The use of the superscript eq is deliberately general so

that, depending on the situation being modelled, eq could refer to still water conditions or equilibrium

conditions to allow one to drive a simulation to steady state. Eq. (3.2) can be written as
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qdXþ

Z
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Z
X
h� dX; ð3:3Þ

where the equilibrium-corrected source term h� is given by

h� ¼ h� ofðqeqÞ
ox

: ð3:4Þ

Also, the vector of conserved variables q is given by

q ¼ qeq þ q0; ð3:5Þ

where q0 is the deviation of q from the equilibrium or still water value such that oqeq=ot ¼ 0. Eq. (3.3)

therefore becomes

o

ot

Z
X
q0 dXþ

Z
X

of 0

ox
dX ¼

Z
X
h� dX; ð3:6Þ

where f 0 ¼ fðqÞ � fðqeqÞ. By inspection, this equilibrium-corrected equation can be solved in the usual

manner (e.g. [33]). However, Eq. (3.6) does not suffer from the problems associated with conservation

properties encountered previously. In calculating h�, if a steady equilibrium state is assumed preceding the

simulation (e.g., for the SWEs, the water is motionless and in equilibrium), then o=ot ! 0, and so the

original equation set can be reduced toZ
X

ofðqeqÞ
ox

dX ¼
Z
X
heq dX: ð3:7Þ

It is at this stage that the root cause of the numerical imbalance reveals itself, since within the discret-

isation scheme Eq. (3.7) does not hold, as seen in Section 2 for the special case of the shallow water

equations. Approaches such as eigenvalue decomposition of the source terms [22] make the source terms

effectively become pseudo flux terms. Herein, the imbalance is accepted, but is used as a means to derive a
form of the governing equations that exploits the deviation from the system�s unforced equilibrium (Eq.

(3.6)) during the numerical solution process. This idea has a sound physical basis given that the motion of

all dynamical systems can be viewed or analysed as being driven by external inputs and their position

relative to their unforced equilibrium. Therefore, although the root cause of the numerical incompatibility

is strictly still contained within the numerical scheme, as long as the deviations from the equilibrium are

calculated correctly, the approach should nevertheless predict the system�s behaviour properly.
From Eq. (3.7),

h� ¼ h� heq: ð3:8Þ

Hence, at each time step during the simulation the equilibrium source vector heq is subtracted from h.

Alternatively, Eq. (3.6) can be derived by subtracting the equilibrium state of Eq. (3.1) from (3.1) itself.
3.2. Choice of solution technique

At this point there are two ways to solve Eqs. (3.3) or (3.6):

(a) Find
R
XðofðqeqÞÞ=ðoxÞdX and heq once only at the beginning of the simulation using Roe�s approximate

Riemann solver and then subtract them at each iteration in the evaluation of both sides of Eqs. (3.3)

and (3.6).

(b) Alternatively, evaluate the equilibrium-corrected flux gradient term
R
Xðo=oxÞ½fðqÞ � fðqeqÞ�dX using

Roe�s Riemann solver each time step and evaluate h� ¼ h� heq.
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Method (a) is the most straightforward, but not necessarily the simplest. This depends on the equations

and their simplicity at the initial equilibrium or �still-water� state. Therefore, method (b) may offer some

advantages depending on the complexity of the system of equations, and thus is subjected to a closer
examination.
3.3. Invariance of the flux Jacobian

We consider method (b), and applying a quasi-linearisation to the following non-homogeneous system of

equations,

o q0 þ qeq
	 


ot
þ o

ox
fðqÞ½ � fðqeqÞ� ¼ h�; ð3:9Þ

we get

oq0

ot
þ A0 o q� qeqð Þ

ox
¼ h�; ð3:10Þ

where the equilibrium-corrected flux Jacobian A0 (denoting element-by-element differentiation) is given

by

A0 ¼ o fðqÞ � fðqeqÞ½ �
o q� qeqð Þ ¼ o fðqÞ � fðqeqÞ½ �

oq0
: ð3:11Þ

Now, since ofðqeqÞ=oq0 ¼ 0, Eq. (3.11) reduces to

A0 ¼ ofðqÞ
oq0

¼ ofðqÞ
oq

oq

oq0
: ð3:12Þ

As q ¼ qeq þ q0, then oq=oq0 ¼ I (the identity matrix), which is easily seen to be the case with the SWEs.

Hence, Eq. (3.12) becomes

A0 ¼ ofðqÞ
oq

¼ A; ð3:13Þ

which is exactly the case found with the SWEs in [33]. Unsurprisingly, Eq. (3.13) proves that the equi-

librium-corrected flux Jacobian is exactly the same as the flux Jacobian for the conventional hyperbolic

system. Depending on the complexity of the equation system being solved, A0 may be very difficult to derive

algebraically. However, from Eq. (3.13), it is clear that only the flux Jacobian for the conventional equa-

tions need be obtained. The SWEs are a simple and well-posed set of equations, so it is not surprising that

A0 can be derived easily as was shown by Rogers et al. It should also be noted that for the SWEs, the

quiescent or still water state has the simple form f ¼ u ¼ v ¼ 0. However, this is not always the case with all
equation systems as will be seen in Section 5.

An advantage of this approach over a posteriori numerical methods such as those developed by

V�aazquez-Cend�oon [38] and Hubbard and Garc�ııa-Navarro [22] is that the analysis is valid for arbitrary order

of numerical approximation. It is also clear that the general principles are not restricted to Roe�s ap-

proximate Riemann solver. This balancing methodology is not necessarily a more efficient approach but is a

mathematically general treatment that overcomes a genuine problem that afflicts Roe�s approximate solver

when applied to hyperbolic equations.
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4. Flux gradient and source balancing using shallow water equations

The generalised flux gradient and source term balancing technique will first be demonstrated with the
SWEs since they provide one of the simplest examples of numerical imbalance. Herein, the solution

methodology of Rogers et al. [33] is repeated briefly with extra salient points that were hitherto not

realised.

4.1. Numerical discretisation

We write the two-dimensional SWEs (Eqs. (2.1a)–(2.1c)) in integral form as

o

ot

Z
X
qdXþ

Z
X

of

ox

�
þ og

oy

�
dX ¼

Z
X
hdX; ð4:1Þ

where g is a flux vector. For the SWEs, the vectors q, f, g and h are conventionally given in hyperbolic form

using the splitting Eq. (2.2)

q ¼
h

uh

vh

2
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3
75; f ¼

uh

u2hþ 1
2
gh2 � ehou=ox

uvh� ehov=ox

2
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3
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uvh� ehou=oy

v2hþ 1
2
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2
64

3
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h ¼
0

ðswx � sbxÞ=q� ghSox þ hfv

ðswy � sbyÞ=q� ghSoy � hfu

2
64

3
75:

ð4:2Þ

Recall that for �still water� (or eq) values, the SWEs have the convenient properties f ¼ u ¼ v ¼ 0 and

h ¼ hs, so that by applying the flux-gradient source-term balance of Section 3 (method b), these vectors are
transformed to

q0 ¼ q� qeq ¼
f

uh

vh

2
64

3
75; f 0 ¼ f � feq ¼

uh

u2hþ 1
2
gðf2 þ 2fhsÞ � ehou=ox

uvh� ehov=ox

2
64

3
75;

g0 ¼ g� geq ¼
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2
gðf2 þ 2fhsÞ � ehov=oy

2
64

3
75; h� ¼ h� heq ¼

0

ðswx � sbxÞ=q� gfSox þ hfv

ðswy � sbyÞ=q� gfSoy � hfu

2
64

3
75:
ð4:3Þ

These are exactly the same vectors used by Rogers et al. [33], who utilised the slightly different approach of

algebraic manipulation of Eq. (2.2) to obtain Eq. (2.12).

Using the flux-gradient and source-term balance and applying Gauss� theorem to the flux gradient in-

tegral, Eq. (4.1) may be written as

o

ot

Z
X
q0 dXþ

I
S

f̂f
�

� f̂feq
�
dS ¼

Z
X
h� dX; ð4:4Þ

where f̂f is the vector of flux functions through S given by

f̂f ¼ fnx þ gny ; ð4:5Þ



B.D. Rogers et al. / Journal of Computational Physics 192 (2003) 422–451 431
in which nx and ny are the Cartesian components of n, the unit normal vector to S. In Eq. (4.4), f̂f � f̂feq ¼ f̂f 0

may also be written in terms of inviscid and viscous fluxes as

f̂f 0 ¼ fI � efV; ð4:6Þ

where

fI ¼
uhnx þ vhny

ðu2hþ g½f2 þ 2fhs�=2Þnx þ uvhny
uvhnx þ ðv2hþ g½f2 þ 2fhs�=2Þny

2
4

3
5 and fV ¼

0

ðhou=oxÞnx þ ðhou=oyÞny
ðhov=oxÞnx þ ðhov=oyÞny

2
4

3
5: ð4:7Þ

The equations are discretised on a collocated grid with f, uh and vh stored at the centre of each cell. For

each cell, Eq. (4.4) can be more conveniently rewritten as

oV q0

ot

����
i

¼ �
I
oCi

f̂f
�

� f̂feq
�
dS þ Vi hi

	
� heqi



¼ �

I
oCi

f̂f 0i dS þ Vih
�
i : ð4:8Þ

The surface integral in Eq. (4.8) can be evaluated in discrete form by using
H
oCi

f̂f 0i ds ¼ ðf̂f 0E � f̂f 0W þ f̂f 0N � f̂f 0SÞ
Ds, where f̂f 0E, f̂f

0
W, f̂f

0
N and f̂f 0S are the vector fluxes through the east, west, south and north faces of each cell,

and Ds is the length of the side of the cell. At each cell edge, the convective fluxes are evaluated using Roe�s
Riemann solver (Eq. (2.8)). Eq. (4.8) is then integrated in time using the second-order Adams–Bashforth

scheme.

As proven in Section 3.3, the inviscid flux Jacobian remains unchanged and is given by

A ¼ oðfIÞ
oq

¼
0 nx ny

ðc2 � u2Þnx � uvny 2unx þ vny uny
�uvnx þ ðc2 � v2Þny vnx unx þ 2vny

2
4

3
5; ð4:9Þ

which has real and distinct eigenvalues (confirming hyperbolicity),

k1 ¼ unx þ vny ; k2 ¼ unx þ vny � cn; k3 ¼ unx þ vny þ cn; ð4:10Þ

where c is the wave celerity and n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y

q
¼ 1. The associated right and left eigenvector matrices are

R ¼
0 1 1

ny u� cnx=nð Þ uþ cnx=nð Þ
�nx v� cny=n

	 

vþ cny=n

	 

2
4

3
5 and L ¼

� uny�vnxð Þ
n2

ny
n2 � nx

n2
1
2
þ unxþvny

2cn
�nx
2cn

�ny
2cn

1
2
� unxþvny

2cn
nx
2cn

ny
2cn

2
64

3
75: ð4:11Þ

These eigenvalues and eigenvectors also confirm that the approach in Section 3 ensures the still-water

corrected SWEs retain their hyperbolic nature, which is a prerequisite for using Roe�s approximate Rie-

mann solver. It is no surprise, therefore, that the shock propagation speed given by the flux-gradient source-

term balanced SWEs has the same theoretical result as that given by Toro [36].
The variables u, v, c in Eqs. (4.9)–(4.11) are given by Roe�s average state which is defined as

u ¼ uþ
ffiffiffiffiffiffi
hþ

p
þ u�

ffiffiffiffiffiffi
h�

pffiffiffiffiffiffi
hþ

p
þ

ffiffiffiffiffiffi
h�

p ; v ¼ vþ
ffiffiffiffiffiffi
hþ

p
þ v�

ffiffiffiffiffiffi
h�

pffiffiffiffiffiffi
hþ

p
þ

ffiffiffiffiffiffi
h�

p and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g hþ þ h�ð Þ

2

r
; ð4:12Þ

where the superscripts + and ) denote the right and left Riemann states on either side of a cell interface,

respectively.

A nonlinear slope limiter is used to prevent unphysical oscillations and render the scheme total variation

diminishing (TVD). Herein, the limiter is implemented such that, for consecutive cells i� 1, i, iþ 1 on a
locally uniform grid, the reconstructed Riemann states are given by
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q�iþ1
2
¼ qi þ

U
2

qið � qi�1Þ and qþ
i�1

2

¼ qi �
U
2

qið � qi�1Þ; ð4:13Þ

where U is the limiter. In practice, the limiter restricts the gradient such that the cell face data, reconstructed

from the stored cell-centre values, fall within the range of the cell-centre data in the cells either side of the

interface. As given by Hirsch [20], U is defined as

UðrÞ ¼ max½0;minðbr; 1Þ;minðr; bÞ�; ð4:14Þ

where the limiter parameter 16 b6 2, and the gradient ratio is given by

r ¼
qiþ1�qi
qi�qi�1

; qi � qi�1 6¼ 0;

0; qi � qi�1 ¼ 0:

�
ð4:15Þ

The choice of minmod slope limiter (b ¼ 1) used herein is of relatively low strength and so is slightly

dissipative, but this effect should not be overly significant for shallow water flows (see [3]). Finally, the

entropy fix of Harten and Hyman [19] is used to avoid the numerical solution generating unphysical dis-

continuities.

4.2. Numerical results for shallow water equations

4.2.1. Choice of validation tests

Any flux-gradient and source-term balancing scheme must be able to deal with the flow regimes present

in shallow water flows over varying bathymetries. A balancing technique must therefore address the fol-
lowing [22]:
ii(i) The ability to maintain quiescent flow.

i(ii) The accuracy of approximations to both continuous and discontinuous steady state solutions.

(iii) The accuracy of simple time-dependent approximations.
LeVeque [24] devised several benchmark tests including steady transcritical flow over a one-dimensional

hump and the propagation of free surface disturbances over one- and two-dimensional humps. Hubbard

and Garc�ııa-Navarro [22] and Zhou et al. [41] validated their models using LeVeque�s test cases, as well as
tidal wave flow cases suggested by V�aazquez-C�eendon [38]. These included shallow subcritical flows in
channels of variable width and changing bed slope, where asymptotic analytical solutions exist. Zhou et al.

[41] simulated bore reflection in a diverging channel and compared numerical predictions with experimental

results for a hydraulic jump. The Working Group on Dam Break Modelling [18] proposed standard tests,

which include many of the above cases, with particular emphasis on comparisons with well documented

experimental data and analytical solutions.

Of the cases that emphasise problems involving the issues mentioned above, we select the following tests:
ii(i) Wind-induced flow in a circular basin of non-uniform bathymetry.

i(ii) Steady transcritical flow over a one-dimensional hump.
(iii) Wave propagation over a two-dimensional hump.
It has been shown that the formulation accurately predicts standard dam break cases (see Borthwick et al.

[7]), confirming that the proposed balancing technique does indeed preserve the shock capturing property

of Roe�s Riemann solver embedded in a Godunov-type scheme.

4.2.2. Wind-induced circulation in a circular basin

Consider the circular dish-shaped shallow flow domain where numerical incompatibility of conventional

shallow water formulations was demonstrated in Section 2. An eastward-directed uniform surface stress of
0.02 N/m2 is built up over 1000 s, with a time step of 0.05 s. The Coriolis force is set to zero and the eddy

viscosity coefficient is 0.00012 m2/s. Bed friction is given by a logarithmic relationship such that
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sbx ¼ CDqu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and sby ¼ CDqv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
; ð4:16Þ

where [34]

CD ¼ j
Bþ lnðz0=hÞ

� �2
; ð4:17Þ

the von K�aarm�aan constant j ¼ 0:4, the integration parameter B ¼ 1, the bed roughness height z0 ¼ 2:8 mm

and h is the total water depth. Fig. 3 depicts the depth-averaged velocities and stream function contours

within the dish at t ¼ 10; 000 s, when steady state was achieved. The flow is directed against the wind along
the east–west axis of the dish, and there are two counter-rotating gyres with their centres located slightly

downstream of the middle of the basin, in close agreement with the analytical model of Kranenburg [23]

and identical to the results presented by Rogers et al. [33]. This confirms that a physically meaningful flow

field is produced using the new balanced hyperbolic matrix formulation.

4.2.3. Steady-transcritical flow with a shock over a one-dimensional hump

This benchmark test (see [38,41]) comprises flow along a 25 m long one-dimensional channel with a

bump defined by

hs ¼ 0:05ðx� 10Þ2 if 8 m < x < 12 m;
0:2 otherwise;

�
ð4:18Þ

where x is the distance along the channel. The boundary conditions determine the flow conditions which

can be subcritical, transcritical with or without a shock, or supercritical. Analytical solutions are provided
by Goutal and Maurel [18]. In the present paper, the boundary conditions have been chosen to induce

transcritical flow with a shock over the hump, as this is the most demanding for a numerical scheme when

predicting a steady discontinuous solution over a non-uniform bathymetry. Thus, the discharge per unit

depth at the upstream boundary is specified as q ¼ 0:18 m2/s and the depth at the downstream boundary is
Fig. 3. Circular basin: wind-induced circulation.
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h ¼ 0:33 m. The numerical domain is uniformly discretised in space using 256 cells. The time step Dt is
0.0175 s. The bed is frictionless and there is no eddy viscosity.

Fig. 4 shows the converged steady-state numerical predictions of the water depth, Froude number and
discharge along the channel. The agreement between the numerical prediction and the analytical solution is

very close. The only significant deviation between the numerical and analytical solutions is in the flow rate

at the location of the shock. This may also be observed in the results reported elsewhere [22,38,41]. This is

surprising because the flow rate q ¼ uh is a quantity that should be conserved. However, little attention has

been drawn to this discrepancy in the literature. The underlying reason may be due to the fact that

Godunov-type methods do not conserve energy in this type of discontinuous shallow flow.

To assess convergence, a global relative error is defined [41] as

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

hni � hn�1
i

hni

� �2

vuut ; ð4:19Þ

where hn and hn�1 are the water depths at time levels n and n� 1, and the scheme is judged to have con-

verged when R < 5� 10�6. Fig. 5 shows the convergence history of the computed water depths. The so-

lution has reached steady state by 3750 iterations according to the above criterion. When comparing

different schemes, it must be remembered that the convergence history will depend on the time-integration

scheme used.

4.2.4. Wave propagation over a two-dimensional hump

The two-dimensional bed topography proposed by LeVeque [24] is

hs ¼ 1� 1

2
exp

"
� 50 x

� 
� 1

2

�2

þ y
�

� 1

2

�2
!#

ð4:20Þ

for 0 < x, y < 1 m. Initial conditions are quiescent with u ¼ v ¼ 0 m/s and a free surface disturbance given

by

f ¼ 0:2 if 0:1 m < x < 0:2 m;
0 otherwise:

�
ð4:21Þ
Fig. 5. Steady transcritical flow over a hump: convergence history.
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At time t ¼ 0 s, the water surface splits into two waves, each propagating with characteristic velocities

�
ffiffiffiffiffi
gh

p
, so that one wave leaves the domain and the other propagates over the hump. To achieve this,

transmissive open boundaries (see [21]) are located at x ¼ 0 and 1 m, and lateral slip boundaries at y ¼ 0
and 1 m. A 100� 100 uniform grid is used and the time increment is Dt ¼ 0:002 s. Bed friction and viscosity

are zero, and g is set at 1 m/s2. Fig. 6 displays the water surface elevation at time t ¼ 0:7 s by means of a
Fig. 6. Flow over a two-dimensional hump: (a) Three-dimensional view of water surface at t ¼ 0:7 s. (b) Water surface contours (m) at

t ¼ 0:7 s.
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three-dimensional surface plot and contour plot. The results show that the initial disturbance has propa-

gated over the spatially varying bathymetry and concentrated the wave energy just behind the shoal. The

plots indicate that unphysical numerical perturbations are not present in the solution and agree closely with
the results obtained by LeVeque [24] and Hubbard and Garc�ııa-Navarro [22].
5. Demonstration of flux-gradient and source-term balancing using period-averaged wave–current interaction

model

Many flux-gradient and source-term balancing techniques have been validated solely for the shallow

water equations where the only terms that need alteration are those expressing the effect of bed slope. In this
section, the new flux-gradient source-term balancing technique is applied to a more complicated set of

equations arising in coastal engineering. These describe the period- and depth-averaged conservation of

mass, momentum, wave energy and wave number in the nearshore zone [39]. A detailed numerical solver has

already been presented for this equation system by Rogers et al. [32], which is briefly summarised herein.

5.1. Governing equations

As waves enter the coastal zone, they are modified by the bathymetry through reflection, refraction,

diffraction and wave breaking, and are further altered by interaction with currents. The physical processes

are extremely complex and, from the modelling perspective, require considerable idealisation. In the ray-

type approach, which describes wave–current interaction and diffraction effects, it is assumed that vertical
motions are negligible, pressure is hydrostatic, and that waves are progressive with no reflection. Hence,

modified shallow water equations are derived by depth-averaging the Reynolds equations that conserve

mass and momentum, which after including the effect of short waves and averaging over one wave period,

may be written as:

og
ot

þ oðuhÞ
ox

þ oðvhÞ
oy

¼ 0; ð5:1aÞ
oðuhÞ
ot

þ o u2hð Þ
ox

þ oðuvhÞ
oy

� ex
o huxð Þ
ox

�
þ ey

o huy
	 

oy

�

¼ swx �-0.397 re
f
BT
/F7 1 Tf
9.924254 322.639 22.2664 TD
0 Tc
(o)Tj
/F8 1 Tf
0.5008 0 TD
(y)Tj
/F121 Tf
0.39265ng5a6g5
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oKx

ot
þ u
	

þ Cgx


 oKx

ox
þ v
	

þ Cgy


 oKx

oy
þ Sh

oh
ox

þ Kx
ou
ox

þ Ky
ov
ox

� Cg

2k
od�

ox
¼ 0; ð5:2bÞ
oKy

ot
þ u
	

þ Cgx


 oKy

ox
þ v
	

þ Cgy


 oKy

oy
þ Sh

oh
oy

þ Kx
ou
oy

þ Ky
ov
oy

� Cg

2k
od�

oy
¼ 0; ð5:2cÞ

where g is the period-averaged mean water level (set-up and set-down) above the still water level hs,
hð¼ gþ hsÞ is the mean water depth, u and v are period- and depth-averaged velocities in the x- and y-
directions, respectively, (ux, uy) and (vx, vy) are the spatial derivatives of (u, v), q is water density, swx and swy
are surface stresses, sbx and sby are bed friction stresses, f is the Coriolis parameter, �x and �y are the ki-

nematic eddy viscosity coefficients, E ¼ qga2=2 is the wave energy per wave per unit crest length, a is the

wave amplitude, Kx and Ky are the wave number components, Cg is the magnitude of the intrinsic group

celerity with components Cgx and Cgy , k is the separation factor, Ca is a bottom friction coefficient related to

the wave amplitude, Sh is a depth-related frequency response factor, and Sxx, Sxy , Syx and Syy are radiation

stress components representing excess momentum flux due to waves.

The radiation stress tensor is given by

Sij ¼
1

2
1ð

�
þ GÞKi

k
Kj

k
þ Gdij

�
E; ð5:3Þ

in which G ¼ 2kh= sinhð2khÞ, dij is the Kronecker delta (dij ¼ 1 if i ¼ j and dij ¼ 0 if i 6¼ j). The sepa-

ration factor k is related to the wave number through the Battjes relation [4], K2 ¼ k2 þ d� ¼ k2ð1þ dÞ,
where d� ¼ ð1=aÞr2a ¼ k2d and d is the diffraction factor. In tensor notation, the group celerity com-

ponents are

Cgi ¼
Ki

k
Cg ¼

1

2
1ð þ GÞ ro

k
Ki

k
¼ 1

2
1ð þ dÞ 1ð þ GÞ ro

K
Ki

K
; ð5:4Þ

where the group celerity is Cg ¼ ð1þ GÞro=ð2kÞ ¼ kGK , the intrinsic wave frequency is ro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg tanh kh

p

and the wave number vector magnitude is K ¼ jKj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
K2

x þ K2
y , wherein Kx ¼ K cos h and Ky ¼ K sin h. The

depth-related frequency response factor is Sh ¼ oro=oh ¼ Gro=2h. The final terms in Eqs. (5.2a)–(5.2c)
model diffraction due to amplitude curvature of linear waves. The friction coefficient Ca, the kinematic eddy

viscosity coefficients �x and �y and wave breaking are all estimated empirically using Bijker�s [6], Thornton�s
[35] and the US-CERC [37] formula, respectively. More sophisticated closure sub-models could be utilised

but are not implemented here, as the purpose of this paper is to implement flux-gradient and source term

balancing with Roe�s solver.

5.2. Numerical discretisation

Comparison of the depth- and period-averaged mass and momentum equations (5.1a)–(5.1c) with the

SWEs of Section 2 (Eqs. (2.1a)–(2.1c)) reveals that the only real differences between the two formulations

are the additional radiation stress gradients. Thus, Eqs. (5.1a)–(5.1c) can be classified as modified shallow

water equations (MSWEs) while Eqs. (5.2a)–(5.2c) are classified as wave conservation equations (WCEs).
Given that the solver of Rogers et al. [33] has already been shown to be a fully validated numerical scheme

for the SWEs, the same approach is used for the wave-induced currents by treating the radiation stress

gradient terms as additional source terms using Roe�s approximate Riemann solver for the MSWEs and

WCEs convective fluxes in a second-order Godunov-type scheme. For the MSWEs, the vectors q, f, g and h

are given by
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q ¼
h

uh

vh

2
64

3
75; f ¼

uh

u2hþ 1
2
gh2 � ehou=ox

uvh� ehov=ox

2
64

3
75; g ¼

vh

uvh� ehou=oy

v2hþ 1
2
gh2 � ehov=oy

2
64

3
75 and

h ¼

0
swx�sbx

q � ghSox þ hfv� 1
q

oSxx
ox þ oSxy

oy

� �
swy�sby

q � ghSoy � hfu� 1
q

oSyx
ox þ oSyy

oy

� �
2
6664

3
7775:

ð5:5Þ

For the WCEs, the vectors are

q ¼
E

Kx

Ky

2
64

3
75; f ¼ fW þ fWCI ¼

ECgx

ro

0

2
64

3
75þ

uE

uKx þ vKy

0

2
64

3
75 ¼

ECgx þ uE

ro þ uKx þ vKy

0

2
64

3
75;

g ¼ gW þ gWCI ¼
ECgy

0

ro

2
64

3
75þ

vE

0

uKx þ vKy

2
64

3
75 ¼

ECgy þ vE

0

ro þ uKx þ vKy

2
64

3
75 and

h ¼

� Sxx ou
ox þ Sxy ou

oy þ Syx ov
ox þ Syy ov

oy

� �
� qgaCaa2 þ qga

2
ex o2a

ox2 þ ey o2a
oy2

� �
�Cgy

oKx
oy � Sh ohs

ox þ
Cg

2k
od�

ox

�Cgx
oKy

ox � Sh ohs
oy þ

Cg

2k
od�

oy

2
6664

3
7775;

ð5:6Þ

where superscripts W and WCI refer to wave and wave–current interaction fluxes (see [32]). Using flux

gradient and source term balancing, both the MSWEs and WCEs may be written in the form of Eqs. (4.4)
and (4.8). The equations are discretised on a collocated grid with E, Kx, Ky , g, uh and vh stored at the centre

of each cell.

For the MSWEs, the inviscid flux Jacobian and its eigenvectors remain identical (Eqs. (4.10)–(4.12)). For

the WCEs, the flux Jacobian is given by [32]

A ¼
o fW þ gW
	 


oq

¼

Cgxnx þ Cgyny Kx
oGK

oKx
þ GK

� �
Enx þ Ky

oGK

oKx
Eny Kx

oGK

oKy
Enx þ Ky

oGK

oKy
þ GK

� �
Eny

0 Cgx þ Sh
og
oKx

� �
nx 0

0 0 Cgy þ Sh
og
oKy

� �
ny

2
6664

3
7775; ð5:7Þ

where

GK ¼ Cg

k
;

oGK

oKi
¼ oGK

ok
ok
oKi

and

oGK

ok
¼ � ro

k3
1

�
þ G

2
1

�
þ 2kh
tanh 2kh

��
þ

C2
g

rok
: ð5:8Þ
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For the WCEs, A has eigenvalues given by

k1 ¼ Cgxnx þ Cgyny ; k2 ¼ Cgxnx þ Sh
og
oKx

nx; k3 ¼ Cgyny þ Sh
og
oKy

ny : ð5:9Þ

The associated right and left eigenvector matrices are

R ¼
1 A12 A13

0 Sh
og
oKx

nx 0

0 0 Sh
og
oKy

ny

2
64

3
75 and L ¼

1 �A12 Sh
og
oKx

nx
� ��1

�A13 Sh
og
oKy

ny
� ��1

0 Sh
og
oKx

nx
� ��1

0

0 0 Sh
og
oKy

ny
� ��1

2
66664

3
77775: ð5:10Þ

When solving these equations, the initial values of the wave number components are estimated from the

linear dispersion equation, ro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg tanh kh

p
, and Snell�s Law, and these wave number component values

change slightly as the solution evolves. Note also that for non-diffractive simulations, amplitude curvature

due to diffraction is negligible so that d� and its gradients are set to zero. Hence, the solution is advanced by

evaluating the surface integral in Eq. (4.8) using the same procedure detailed in Section 4.1, and then

similarly integrating in time using a second-order Adams–Bashforth scheme.
This formulation involves a similar splitting of terms between flux gradients and source terms to that

used for the SWEs to ensure hyperbolicity. In this case,

Sh
oh
ox

¼ Sh
og
ox

þ Sh
ohs
ox

; ð5:11Þ

which will test the ability of the proposed balancing scheme to deal with a different but related problem.

The quiescent or still-water state for the combined MSWEs and WCEs is defined as g ¼ u ¼ v ¼ 0, h ¼ hs,
E ¼ 0, Kx ¼ Ky ¼ 0, but k 6¼ 0 since the frequency r is specified over the whole domain.

5.3. Numerical results for period-averaged wave–current interaction model

5.3.1. Wave flow over a stepped bathymetry

The WCEs describe the wave transformation over a gradually varying bathymetry, and therefore they

describe changes in the wave parameters as waves pass over a mildly sloping bottom. Hence, the equations

are not derived with the aim of simulating discontinuous flows, but rather gradually varying ones. How-

ever, it is interesting to see the numerical results obtained when applied to such a case. The test proposed

here consists of a one-dimensional channel of length 4 m with a sudden step in the centre defined by

hs ¼
0:9� 0:2x; 0 < x < 2m;
0:26� 0:08ðx� 2Þ; 2m < x < 4m;

�
ð5:12Þ

where x is the distance along the channel. In reality such a sudden change in the bed would generate not

only a sudden change in the wave parameters, but the waves would produce currents in the vicinity of the

step (in addition to those being generated as the waves progress up the sloping beach), which would in turn

have a feedback effect on the wave parameters. This essentially makes an analytical solution impossible
(hence the need for a numerical scheme). However, for the purposes of model evaluation, wave–current

interaction is removed to create an idealised case for which an analytical solution can be derived by solving

the linear dispersion relation at local water depths when calculating the shoaling wave heights (see [12]).

The numerical domain is discretised spatially using a uniform grid of 64 cells with Dx ¼ 0:0625 m. The

time step is Dt ¼ 0:01 s. Eddy viscosity and bed friction are neglected. The wave number Kx is initially set to

an arbitrary value of 2.5 rad/m along the length of the channel. The initial wave height is zero everywhere,

except at the inlet where the wave height is equal to 0.02 m.
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Fig. 7 shows the analytical solution and numerical solution of the wave number Kx for an assumed mild-

slope over the stepped bathymetry. While there is no unphysical numerical oscillation present, the nature of

the governing equations has been to smooth out any discontinuity in the wave number induced by the

stepped-bathymetry. To cure this, an additional flux is required, namely

f ¼
ESh
k

3
2
þ G

2
� 2kh

tanh 2kh

	 

Shnx
Shny

2
4

3
5Dhs; ð5:13Þ

to account for a sudden change in the bed. When Eq. (5.13) is included, the agreement between the nu-

merical and analytical solutions is excellent as shown in Fig. 8. The agreement for wave height (not shown

here) along the channel is also excellent.
Fig. 9 illustrates the convergence history, where the global relative error defined by Eq. (4.19) is cal-

culated with water depth replaced by wave number. Using the criterion given in Section 4.2.4, convergence

occurs by 8000 iterations. It is important to note here that, in the absence of flux gradient and source term

balancing, the scheme is unstable. Such behaviour will be shown in more detail for the next two cases.

5.3.2. Wave diffraction over a submerged elliptical shoal

Berkhoff et al. [5] presented laboratory data for waves diffracting over a submerged elliptical shoal on a

plane beach. This has become a standard benchmark test to verify numerical wave models (e.g. [25,26]).
Here, only weak currents are generated making it ideal for testing the effectiveness of flux-gradient and

source term balancing in the wave conservation equations.

Fig. 10 shows the bed topography for Berkhoff et al.�s experiments. Initially, waves passing the shoal are

refracted and wave energy converges behind the shoal. Due to diffraction a wave caustic forms as the rays

cross. Berkhoff et al. measured wave heights along eight sections shown in Fig. 10, with experimental

offshore wave conditions prescribed as: wave height Ho ¼ 0:0232 m, wave period T ¼ 1:0 s and incident

wave angle ho ¼ 0�.
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In the classical ray-type approach, it is assumed that no energy is transferred across wave rays, so that in

diffraction this fails to give a solution in caustic zones. The extra third-order diffraction terms (e.g., od�=ox)
in Eqs. (5.2a)–(5.2c) are essentially a fix for the lateral transfer of energy along a wave crest, and should

ideally be discretised using at least a third-order scheme. The present numerical scheme is a second-order
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Godunov-type solver, but the requirement of a third-order discretisation can be relaxed in weakly-diffracted

wave fields without having a significant detrimental effect on the solution, so that od�=oxi terms can be

evaluated using finite differences. In our numerical simulations, a uniform grid was used where

Dx ¼ Dy ¼ 0:5 m, the time step Dt ¼ 0:05 s, the dimensionless eddy viscosity coefficient MT was kept at 1.0,

the minimum depth Dmin set to 0.001 m with the roughness height being set to 0.001 m over the entire
domain.

Fig. 11 shows wave vector plots at t ¼ 20 s for cases without and with flux-gradient and source term

balancing. In the latter case, the wave field at t ¼ 3 s computed using the unbalanced formulation provides

physically acceptable starting equilibrium values for the balanced scheme in order to accelerate the evo-

lution of weakly and gradually varying waves. In the unbalanced case of Fig. 11(a), it can be seen that the

wave vectors are unreasonably large at the shoreline and have evolved unphysically over the hump. The

values of the wave numbers eventually render the scheme unstable. The balanced case in Fig. 11(b) shows

no such unphysical behaviour with the direction of the wave vectors focussing wave energy behind the
shoal. This is confirmed in Fig. 12(a), which shows the predicted relative wave height contours from the

present scheme, where it can be seen that the balanced simulation has reproduced the wave focussing and

attenuation in the lee of the shoal. The contours are similar to the experimental results given in Fig. 12(b)

and alternative numerical results in the literature (e.g., [29,39]).

In Fig. 13, four representative plots of relative wave heights along different sections display the exper-

imental data, the computed results of the present scheme, and for comparison, the results of Yoo and

O�Connor [39] who solved the same equations but with a finite difference scheme. Ray-type models are

averaged over one wave period and cannot account for all the rapid changes in wave phase responsible for
the undulating wave height profiles in the experimental data. Such variations have to be modelled by more

sophisticated nonlinear mathematical formulations that retain the correct phase information such as mild-

slope models [26] or Boussinesq-type models [25]. However, the ray-type models offer a reasonable estimate

with far less computational expense. When solving the wave conservation equations with a Godunov-type

solver, it is clear from Fig. 11 that the wave heights displayed in Figs. 12 and 13 could not have been

computed without balancing.
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5.3.3. Wave–current interaction at a sinusoidal beach

At real beaches currents are generated by variations in the bed topography and wave field. At rhythmic

beach profiles, nearshore circulation cells (combinations of longshore currents and seaward directed rip-like

currents) occur when the incident wave direction is almost normal to the beach. Laboratory studies have
examined the flow patterns and current kinematics at half-sinusoidal beaches (e.g. [10,11]).

The experimental measurements of da Silva Lima [10] are used here for verification of the numerical

scheme. Da Silva Lima�s wave basin consisted of a half-sinusoidal plywood beach whose depth profile was

specified by



hsðx; yÞ ¼
sx; �0:7 m6 x6 0;
s x� 0:75 sin px

4:36

	 

sin 2py

k

	 
� 

; 06 x6 4:36 m;

�
ð5:14Þ

where x is the distance offshore from the still water line (SWL), y is the distance alongshore ranging from 1.5

to 4.5 m, s ¼ 0:05 is the slope of the plane beach and the so-called rip current spacing is k ¼ 6 m. Fig. 14

shows a definition sketch of the wave basin.
During the simulation, a time step of Dt ¼ 0:005 s is utilised. The incident wave height is ramped up over

a period of 20 s. The offshore wave conditions are: wave height Ho ¼ 0:0618 m; wave period T ¼ 0:76 s; and



Fig. 14. Half sinusoidal beach: definition sketch.

Fig. 13. Diffraction over an elliptical shoal: comparison of computed relative wave height along sections.
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incident wave angle ho ¼ 0�. A uniform 32� 16 grid is used, where Dx ¼ Dy ¼ 0:1875 m. Wetting and

drying at the shoreline is implemented according to Ebersole and Dalrymple�s [13] scheme. For the case of a

moving shoreline, careful consideration must be given to the definition of the equilibrium-state for a cell

that is initially dry and becomes wet. When a cell is dry, there is no water so the equations are not active.
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Therefore, with a given still water level, the equilibrium state in such cells is the dry condition (u ¼ v ¼ 0,

h ¼ 0). Hence, once an initially dry cell becomes flooded, the balanced equations are solved using the dry

condition as the equilibrium state.
As mentioned in Section 5.3.1 for the case of wave flow over a step, the scheme is unstable in the absence

of flux gradient and source term balancing. Wave vectors for unbalanced and balanced formulations are

shown in Figs. 15(a) and (b) for the refracted wave fields over the half-sinusoidal beach. In this case, similar

to Section 5.3.2, the wave field at t ¼ 1 s computed using the unbalanced formulation provides physically

acceptable starting equilibrium values for the balanced scheme. Once again it is clear that the splitting of

the flux gradients and source terms in Eq. (5.11) must be balanced properly. The Shog=oxi terms are only
Fig. 15. Half sinusoidal beach: (a) Computed wave vectors at t ¼ 15 s without balancing (unstable). (b) Computed wave vectors at

t ¼ 15 s with balancing.
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weakly dependent on Kx and, when placed into the flux gradients, do not automatically balance the

Shohs=oxi terms in the source vector. This causes the values of Kx to grow. Unsurprisingly, such numerical

instability is most acute at the shoreline and first manifests itself as unrealistically high wave numbers.
Thus, appropriate balancing is required to give the physically correct wave field of Fig. 15(b).

Predicted depth-averaged currents are given in Fig. 16. A large primary gyre is located with its eye

located about 1.74 m offshore of the still water line (SWL) in close agreement with the experimental result

of da Silva Lima presented in Fig. 17 (where the rotational centre of the primary gyre is approximately 1.7 m
Fig. 16. Half-sinusoidal beach: depth-averaged velocities for level 5 grid.

Fig. 17. Half-sinusoidal beach: experimental velocity vectors [10].



Fig. 18. Half-sinusoidal beach: experimental and computed wave heights along centreline of basin [10].
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from the SWL). In contrast, Borthwick and Park [8], who used the same original mathematical formulation

but with a first-order finite difference discretisation for the flux terms, produced a gyre of similar size, but

located incorrectly at the centre of the basin. Also evident in the computational results, is the secondary
gyre in the shallowest water depths.

The predicted wave heights along the cross-shore centreline of the basin displayed in Fig. 18 match

Borthwick and Park�s [8] numerical results and are in reasonable agreement with da Silva Lima�s [10] ex-
perimental data. The results not only indicate that the wave-breaking criterion is well suited to this ap-

plication, but also confirm the ability of the scheme to account correctly for the transfer of wave energy

density.
6. Conclusions and further work

A new technique has been presented for mathematically conditioning hyperbolic matrix systems of

conservation laws in finite volume Godunov-type schemes where Roe�s approximate Riemann solver is used

to model convective flux terms. While strictly still containing the root cause of the imbalance, extra physical

information has been imposed so that the technique exploits the deviation from the equation system�s
unforced equilibrium as a means to bypass any possible numerical incompatibility between the flux-

gradient and source terms. The technique has been applied to two different sets of equations to demonstrate
its robustness. When applied to the shallow water equations, the technique works successfully for still water

and wind-induced circulation in a dish-like circular basin. A demonstration case illustrated the unphysical

results that are obtained for still water in a container with non-uniform bathymetry when the flux gradient

and source terms in the shallow water equations are not balanced correctly a priori.

The balancing technique has also been applied to a Godunov-type solver of the hyperbolic period- and

depth-averaged ray-type wave conservation and modified shallow water equations. Using an additional flux

correction term, the model correctly simulates the converged wave number and wave height distributions

over a stepped bed. Results are given for the diffracted wave field in the lee of a submerged shoal and of
nearshore wave–current interaction at a semi-sinusoidal beach. When utilising Roe�s Riemann solver for

the convective wave fluxes, both cases demonstrate the importance of flux-gradient and source term bal-

ancing to obtain physically appropriate solutions in close agreement with laboratory data.
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Inter-period coastal flow models are commonly based on Boussinesq-type equations [27], which contain

additional terms (over and above the shallow water equations) consisting of third, fourth and fifth order

mixed time and space derivatives. These terms are too complicated to be included in simple flux gradients
and so have to be treated as source terms using conventional approaches, even when physically they are not

source terms. Thus, further research is required on finite volume techniques that reflect the physical

meaning of the high order terms in Boussinesq-type equations.
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